Continuous sorting of microparticles using dielectrophoresis.

نویسندگان

  • D F Chen
  • W H Li
  • H Du
  • M Li
چکیده

Sorting of particles such as cells is a critical process for many biomedical applications, and it is challenging to integrate it into an analytical microdevice. We report an effective and flexible dielectrophoresis (DEP)-based microfluidic device for continuous sorting of multiple particles in a microchannel. The particle sorter is composed of two components-a DEP focusing unit and a Movable DEP Trap (MDT). The trap is formed by an array of microelectrodes at the bottom of the channel and a transparent electrode plate placed at the top. The location of the trap is dependent on the configuration of voltages on the array and therefore is addressable. Flowing particles are first directed and focused into a single particle stream by the focusing unit. The streamed particles are then sorted into different fractions using the movable trap by rapidly switching the applied voltage. The performance of the sorter is demonstrated by successfully sorting microparticles in a continuous flow. The proposed DEP-based microfluidic sorter can be implemented in applications such as sample preparation and cell sorting for subsequent analytical processing, where sorting of particles is needed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dielectrophoresis (DEP) of Cells and Microparticle in PDMS Microfluidic Channels

Electromanipulation of microparticles utilizing microelectrodes has demonstrated considerable promise for the characterization, separation and handling of biological cells. Presently considerable research and development effort is directed towards the development of miniaturized fluidic systems with integrated dielectrophoresis (DEP) electrodes. The design, development and fabrication of a DEP ...

متن کامل

The effects of suspending medium on dielectrophoretic systems for separating and sorting carbon nanotubes

The separation of two different types of multi-walled carbon nanotubes is studied in a dielectrophoresis-based microchannel system in seven different solvents as the suspending medium.  A simple model was developed to predict the behavior of the multi-walled carbon nanotubes in the above mentioned system. Then, the equations of motion for the multi-walled carbon nanotubes in that system were in...

متن کامل

Label-free Isolation and Enrichment of Cells Through Contactless Dielectrophoresis

Dielectrophoresis (DEP) is the phenomenon by which polarized particles in a non-uniform electric field undergo translational motion, and can be used to direct the motion of microparticles in a surface marker-independent manner. Traditionally, DEP devices include planar metallic electrodes patterned in the sample channel. This approach can be expensive and requires a specialized cleanroom enviro...

متن کامل

Optically-controlled manipulation of live cells using optoelectronic tweezers

Optoelectronic tweezers (OET) provides a non-invasive, low-power, optical manipulation tool for trapping, transporting, and separating microparticles, cells, and other bioparticles. The OET device uses a photosensitive layer to form "virtual electrodes" upon exposure to light, creating non-uniformities in an applied electric field. The electric field gives rise to a force known as dielectrophor...

متن کامل

Characterization of Microparticle Separation Utilizing Electrokinesis within an Electrodeless Dielectrophoresis Chip

This study demonstrated the feasibility of utilizing electrokinesis in an electrodeless dielectrophoresis chip to separate and concentrate microparticles such as biosamples. Numerical simulations and experimental observations were facilitated to investigate the phenomena of electrokinetics, i.e., electroosmosis, dielectrophoresis, and electrothermosis. Moreover, the proposed operating mode can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of nanoscience and nanotechnology

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2012